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Abstract—Nowadays, the number of smartphone users is
growing rapidly. Recent smartphones equipped with several
sensors are convenient apps for collecting information in par-
ticipatory sensing environment. However, contributing sensing
data requires time and monetary cost, which hinder many
people from participation. To realize active and efficient sensing
activities, incentive mechanism is indispensable. This paper
proposes SenseUtil, utility-based incentive for participatory
sensing. SenseUtil applies the concept of micro economics,
where demand and supply decide the value of sensed data.
The incentive dynamically changes along the time according
to several factors such as sensing frequency, nearby sensing
points and users’ preference. To study the impact of incentive
mechanism, we conducted simulation study. The results show
that people actively participate in sensing tasks while keeping
additional cost fewer than three percent in comparison with
non-incentive scenarios.

Keywords-participatory sensing; incentive; utility functions;
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I. INTRODUCTION

The number of smartphone users is growing rapidly [1]–

[3]. It has been reported that the smartphone penetration

in five leading European markets (France, Germany, Italy,

Spain and the United Kingdom) is 54.6% of mobile phone

users by the end of October 2012 [3]. In addition to

cellular communication standards (2G/3G/4G), smartphones

support several communication technologies including Wi-

Fi 802.11 a/b/g/n, Bluetooth and near field communication

(NFC). It also comes with high-performance processor and

various kinds of sensors such as accelerometer, gyroscope,

magnetometer, compass, GPS, barometer, microphone, am-

bient light, camera and so on. These features of current

smartphones are useful for many apps which attract new

users.

Recently, participatory sensing using such smartphones

has been received much attention from researchers [4].

Smartphone sensing platforms, recruitment framework,

energy-efficient techniques and several context-aware apps

have been proposed in the literature [5]–[9]. However, many

smartphone users are not likely to participate in sensing

activities because it takes time and monetary cost for data

communication. Therefore, incentive mechanism is indis-

pensable to realize active participatory sensing by urging

people to report sensed data [10], [11].

This paper proposes SenseUtil, a utility-based incentive

framework for participatory sensing. In this model, con-

sumers who need data pay reward to producers who carry

out sensing tasks and report the data. SenseUtil applies the

concept of micro economics, where demand and supply

decide the value of sensed data. The demand and supply

depend on many factors including location, data types and

users’ preference, and they also change along the time

dynamically. In particular, SenseUtil determines the value of

sensing activities by defining utility functions which are used

to calculate economical reward. SenseUtil aims to maximize

sensing activities while maintaining reasonable sensing cost.

To study the impact of SenseUtil, we conducted simulation

study. The results show that people actively participate in

sensing tasks while keeping additional cost fewer than three

percent in comparison with non-incentive scenarios.

This paper is organized as follows. Section II describes

SenseUtil framework. Section III evaluates the benefit of

SenseUtil through simulation study. Related work is dis-

cussed in Section IV, and we conclude our study in Sec-

tion V.

II. SENSEUTIL FRAMEWORK

SenseUtil consists of three main players: consumers,

producers and a server. A consumer would like to have data

being sensed at a remote area, while a producer is willing

to carry out such sensing tasks. A person can serve as both

the consumer and producer. A central server is responsible

to manage interactions between consumers and producers.

Interactions of three players are summarized in Figure 1 and

the details of SenseUtil are described in this section.
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Figure 1. Interactions of a consumer, a server and a producer.

A. Consumers

A Consumer defines a Point of Interest (POI) where data

should be sensed. In addition to location information, POI

also includes starting time, expiry time and data type (i.e.,

which kind of data need to be sensed). The consumer sends

POI information to the server on demand. When receiving

corresponding data, the consumer pays reward determined

by the utility functions (see Section II-D).

B. A Server

A server is a middleman between consumers and produc-

ers (Figure 1). It maintains POIs’ information or the sensing

tasks requested by consumers and updates corresponding re-

ward of each POI periodically or on demand. The producers

acquire detailed information of sensing tasks by exploiting

pull and/or push services.

By adopting the pull or on-demand services, the server

dispatches POI information upon receiving a request from

a consumer. The producers may use the pull service to

avoid being overwhelmed by too frequent update of POI

information. In addition, the producers can use the pull

service to update current reward of POI. On the other hand,

the push service provides two methods for dispatching the

information to producers, i.e., instant and periodic push. The

instant push allows the server to dispatch the POI infor-

mation immediately upon receiving new POI information

from a consumer. The service is beneficial for producers

who would like to have the information of new POI in real-

time manner; thus, they can act fast to receive rewards. The

producers subscribe to periodic push will receive the POI

information periodically.

The server is also responsible to collect sensing data from

producers and forward the data to consumers. In addition,

the process of collecting payment and rewarding are handled

by the server.

C. Producers

As described above, a producer receives the information

of sensing tasks including current reward from the server

Table I
NOTATIONS.

Dk
th

Distance threshold of a producer k
Uk
th

Utility threshold of a producer k
T k
th

Elapsed time threshold of a producer k
U Independent utility
Umin Minimum utility
Umax Maximum utility
V Correlated utility
Pi A point of interest (POI) i
t Current time
ti Latest sensing time at Pi

a, α, b Constants
wij Weight for calculating correlated utility
dij Distance between Pi and Pj

through pull and/or push services. The producer can also

determines her preferences including area of interest (e.g., a

limited area based on current position or any specific area),

maximum number of tasks, minimum reward, frequency of

push-based notification, and so on.

The behavior of a producer depends on current position

and reward of sensing task. A producer k will carry out a

sensing task if all the following conditions satisfy: (1) her

position is not far from a POI, i.e., the distance between the

producer and the POI is shorter than or equal to Dk
th, (2)

the reward is higher than a threshold Uk
th, and (3) the time

elapsed from previous sensing at the same POI is longer

than T k
th. The underlying reason of the third condition is to

avoid too frequent sensing at the same POI.

If the above conditions satisfy, the producer changes the

route by moving towards the POI, carries out the sensing

task and moves towards the original destination. By default,

the producer uses the maximum speed in order to minimize

moving time. However, the producer may move with the

current speed if she is not in a hurry. After the task has

been done, the producer receives reward via the server.

Note that the producers may calculate utility by using

(1) or (2) introduced in Sect. II-D. However, the producers

may have incorrect value of utility because they do not

know when other producers carry out the sensing tasks. The

producers need to use the pull service to ask for current

utility maintained by the server.

D. Utility Functions

This section introduces utility functions which are used to

calculate the value of sensing data POI i (i.e., Pi) at a given

time t. The consumers have to pay reward according to the

utility functions. We consider two cases when calculating

utility, that is, independent and correlated POIs. Table I

summarizes notations used in the paper.

Independent POI means sensing data of Pi are indepen-

dent of other POIs. Basically, the utility is initialized to the

minimum value (Umin) and increases along the time until

reaching the maximum value (Umax). Equation (1) defines



the utility of POI i at time t.

U(Pi, t) = max (Umin,min (Umax, a(t− ti))) , (1)

where ti is the latest sensing time at Pi and is initialized

to the starting time of Pi. While sensing task is not done,

the utility increases along the time due to higher demand of

consumers. A coefficient a (a > 0), which is determined by

the consumer, determines how fast the utility increases. The

consumer also decides Umin and Umax because the value

of data sensed at each POI may be unequal.

When a sensing task has been done, the utility is reset

to the minimum value and starts to increase again. The un-

derlying reason of (1) is straightforward. Consumers would

like to urge producers to carry out sensing tasks but they

would like to avoid too frequent sensing which is not likely

to give meaningful information for most of applications.

Because some kinds of sensing data do not change abruptly,

it would be better to have an interval between each sensing.

By applying the above equation, consumers pay less for each

sensing if sensing interval is short while they pay more if

the interval is long.

Next, we consider correlated POI, V (Pi, t), where the

utility of Pi correlates to nearby j POIs ((2)).

V (Pi, t) =











αU(Pi, t)+

(1− α)
∑

∀j
wijU(Pj ,t)

∑
∀j

wij
if Pj 6= ∅,

U(Pi, t) if Pj = ∅.

(2)

Equation (2) includes the utilities of nearby j POIs, i.e.,

U(Pj , t) which is calculated by (1) and weighted by wij .

The weight wij is inversely proportional to the distance dij
between Pi and Pj . In particular, wij =

b
dij

, where b (b > 0)

is a constant. In addition, a constant α (0 ≤ α ≤ 1) is a ratio

to determine the weight of Pi and all nearby POIs’ utility.

If nearby POI does not exist, we use (1), i.e., if Pj = ∅,

α = 1.

The nearby j POIs to be considered in (2) are determined

by the area centered at Pi and/or the number of nearest POIs

centered at Pi. It is explicit from (2) that if the utilities of

nearby POIs are high, V (Pi, t) will be high because Pi and

nearby j POIs are not sensed for a while. If any nearby j

POIs has been sensed recently, V (Pi, t) will be low because

nearby POIs are likely to give similar sensing data.

E. Economical Point System

Any kinds of currency including monetary currency, vir-

tual currency and a point system can be applied to SenseUtil

for payments and rewards. Point system is widely adopted

by real-world stores and electronic commerce for long time

and has been proved to be a successful strategy to urge

purchasing and maintain loyalty of customers.

III. PERFORMANCE EVALUATION

We conducted simulations to study the impact of incentive

mechanism. The simulation program is written in Java

language.

Table II
SIMULATION PARAMETERS.

Simulation area (m2) 500 × 500
Sensing area %80 of simulation area
Number of POIs 10
Number of producers 10

Minimum speed (m/s2) 3

Maximum speed (m/s2) 7
Maximum pause time (s) 9
Simulation duration (s) 1,000

Dk
th

(m) 24

Uk
th

13

T k
th

(s) 10

Umin 10
Umax 50
a 1
α 0.5
b 1

A. Simulation Setup

Mobile users or producers move according to the random

waypoint model [12]. Each mobile user is initially placed

at a random position within the simulation area. As the

simulation progresses, each mobile user pauses at its current

location for a random period, which we call the pause time,

and then randomly chooses a new location to move to and

a velocity between the minimum and maximum speeds at

which to move there. The pause time is randomly chosen

between zero and maximum pause time. Each mobile user

continues this behavior, alternately pausing and moving to

a new location, for the duration of the simulation.

Consumers pick random POIs within a sensing area which

is defined as a percentage of the entire simulation area.

The center and aspect ratio of both sensing and simulation

areas are the same, i.e., the sensing area is a subset of the

simulation area. All POIs last from the beginning until the

end of simulations.

The parameters of simulation including those of the ran-

dom waypoint model and utility functions are summarized in

Table II. We run simulation 10 times with different patterns

of node movement.

B. Simulation Scenarios

We consider the following scenarios in our simulation.

• Non-incentive scenario. Since incentive is not avail-

able in this scenario, each node moves according to

the mobility model and carry out sensing tasks if they

happen to pass through a POI. Based on preliminary

experiments, nodes rarely pass through POIs. Thus

a sensing task is supposed to be done if a node

stays within five meters from a POI in our evaluation

(Section III-D).

• Incentive-aware scenario. Both of utility models ((1)

and (2)) are adopted in this scenario. The nearby j POIs

are determined by the circle centered at Pi with the

radius of 50 meters. The server uses the push-based



service to announce POIs and corresponding rewards

at the beginning of the simulations. When the distance

between a producer and a POI is shorter than or equal

to the threshold Dk
th, the producer queries the server

about current reward by using the pull service.

C. Evaluation Metrics

The following metrics are useful to study the impact of

incentive.

• Number of sensings. We count the number of sensing

tasks done by all producers in a simulation. The number

of sensings is a straightforward metric to evaluate the

benefit of incentive. Higher number of sensings means

more people help collect sensing data.

• Paid reward per sensing. We calculate average reward

per sensing in each simulation. Then the percentage of

decreased reward when applying incentive is calculated

as follows.

%Decrease =
Unone − Uincentive

Unone

× 100, (3)

where Unone and Uincentive are average reward per

sensing in non-incentive and incentive-aware scenarios,

respectively. Note that, we assume incentive is available

in non-incentive scenarios for comparison purpose. In

particular, we use the same utility models ((1) and (2))

to calculate rewards when nodes are supposed to do

sensing tasks. The incentive does not actually exist and

nodes move according to the mobility model.

• Traveled distance. There is cost to do sensing tasks

because producers have to change their routes and take

additional time to visit POIs. Thus we compare traveled

distance between non-incentive and incentive-aware

scenarios. We calculate the percentage of increased

distance when applying incentive as follows.

%Increase =
Dincentive −Dnone

Dnone

× 100, (4)

where Dincentive and Dnone are average traveled dis-

tance per node in incentive-aware and non-incentive

scenarios, respectively.

D. Simulation Results

The average results of 10 runs are summarized in Table III

which shows both absolute results and relative results in

percentage. The detailed results of each run for all three

metrics are shown in Figures 2 (the number of sensings), 3

(average reward per sensing) and 4 (traveled distance per

node).

The results in Table III show that the number of sensings

increases 391% and 375% when adopting independent and

correlated incentives, respectively. Figure 2 shows the results

of each individual run. As one would expect, incentive urges

more people to carry out sensing tasks.

Table III
SIMULATION RESULTS OF 10 RUNS.

Non-incentive U V

Total number of sensings 24.9 122.2 118.3
Increased number of sensings (%) N/A 391% 375%
Average reward per sensing 46.0 37.6 36.6
Decreased reward per sensing (%) N/A 18% 21%
Average distance per node (m) 4,638 4,744 4,745
Increased distance per node (%) N/A 2.28% 2.31%
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Figure 3. Percentage of decreased reward.

Next we consider the percentages of decreased reward

when applying incentives (Figure 3). The paid rewards per

sensing decrease 18% and 22% in average when applying in-

dependent and correlated incentives, respectively (Table III).

The rewards decrease because sensing tasks are done more

frequent. We note here that the reward is reset to the

minimum value when a sensing task has been done. In other

words, it means sensing interval is shorter and sensing data

of each POI are updated more frequent. This is a benefit for

consumers who pay attention on the freshness of data. In

addition, the consumers pay less for each sensing task. When

comparing two utility models, the rewards of the correlated

model (V ) are slightly lower than those of the independent

model (U ) because the weighted factor α of V is set to 0.5.

As a result, the rewards of the correlated model increase

slower than the independent model.

The last metric we consider is the percentages of increased

distance when applying incentive (Figure 4). The impact of

both independent and correlated models is similar in which
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Figure 4. Percentage of increased distance.

the traveled distance increases merely two percent. We can

infer from the results that the producers do not need to

move much farther than their originally planned routes. In

other words, it takes a moment to visit POIs before moving

towards the original destinations.

We conclude that incentive is a good motivation to in-

crease sensing frequency. Producers get rewards for their

jobs, while consumers pay less for each sensing task in

comparison with non-incentive scenarios. Additional cost in

terms of traveled distance is also very low.

IV. RELATED WORK

Participatory sensing using mobile phones is an active

and growing research area with a number of open issues

and challenges [4]. The Internet of Things (IoT), several

smartphone sensing platforms, information dissemination

algorithms, energy-efficient techniques and context-aware

apps, which are the complement of SenseUtil framework,

have been proposed in the literature [5]–[9], [13]–[15]. Guo

et al. present hybrid social networking, which highlights the

interweaving and cooperation of heterogeneous communities

[13]. Guo et al. extract the embedded intelligence about in-

dividual, environment, and society by exploring the various

interactions between humans and the IoT [14]. Askus [15]

is a mobile social platform which allows users to send a

request to a group of potential people in a remote area to do

a task. Similar to Askus, other existing sensing platforms are

voluntary systems, i.e., sensing data are contribution from

cooperative users. SenseUtil can be applied directly to such

previous works.

To realize active and efficient sensing activities, incentive

mechanism has been introduced recently. Most of previ-

ous works adopt auction algorithms to decide the value

of sensing data [10], [11], [16], [17]. Unlike previous

works, SenseUtil’s consumers indirectly determine their bids

through some factors such as minimum price, maximum

price, changing rate of price. In addition, the bid price of

SenseUtil dynamically changes according to nearby POIs

and sensing frequency without any further intervention of

consumers.

V. CONCLUSION

To urge people participate in sensing activities, we have

proposed SenseUtil, a utility-based incentive mechanism for

mobile phone sensing. SenseUtil introduces utility functions

which are used to determine the value of sensing data. When

producers finish sensing tasks, they get rewards from con-

sumers according to the utility functions. A salient feature

of SenseUtil is dynamic incentive which changes along the

time depending on sensing activities of all participants. In

comparison with non-incentive environment, the simulation

study shows that more people participate in sensing tasks

while additional traveled distance of participants is less than

three percent.

One of future works is to study the benefit of incentive

mechanism by adopting other mobility models. We also plan

to include other factors in the proposed utility models and

evaluate their impact. Another interesting issue is to let each

producer use different conditions to determine whether to do

a sensing task.
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